MAss Spectrometer for Planetary Exploration (MASPEX)

J. Hunter Waite, Tim Brockwell, Paul Wilson, Keith Pickens, John Roberts, Greg Miller Southwest Research Institute

TOF Concept

- A packet of ions is accelerated to a defined kinetic energy and the time required to move through a fixed distance is measured
- As KE = mv²/2 then lighter ions travel faster than heavier ones → mass separation
- The greater the distance between source and detector the smaller the mass difference that can be seen (resolution)

MASPEX performance comparison

		MASPEX	Cassini INMS	
Storage source increases duty cycle to ~100%, provides ~200,000 ions per extraction	Sensitivity (N ₂)	0.02	0.0006	counts/s per particle/cm³
Multi-bounce geometry enables variable path length increasing resolution	Resolution m/ Δ m	12,300	~200	FWHM
Maximum mass limited by flight time not by field strength or frequency	Mass range	1-1000	1-8, 12-99	u
2000 source extractions per second, each producing a spectrum, provides increased spatial resolution and sensitivity	Single spectrum acquisition time	0.5	34	ms
Dual stage detector provides wide dynamic range	Dynamic range	10 ⁹	108	

Resolution: Multi-Bounce Time-of-Flight

MASPEX Performance

- Extended mass range for heavy organic molecules (>1000 u)
- Enhanced mass resolution for critical isotopes (>10,000 m/Δm)
- Enhanced dynamic range for high S/N (10⁹ in a 1s period)
- Improved sensitivity for rare noble gases (>1ppt with cryotrap)
- High throughput (2000 spectra/s)

Isotopic determination in complex volatile mixtures

- High mass resolution mass spectrometry is essential for H, C, N, and O isotope determination in complex mixtures containing water, ammonia, methane, and organic volatiles.
- Shown here is the determination of the H/D ratio in water requiring a resolution of 12,300, which takes 30 bounces on the MBTOF.

High Sensitivity: Cryotrapping

- Argon over 5 sample sizes and a blank.
 - The sample is held on the adsorber to ~450 seconds
 - During this period the ion pump is opened and a dip in the line would indicate that some of the sample remains unadsorbed
 - The noisy trace seen here is because the RGA is at the limit of its sensitivity.
 - The ion pump is then closed and the adsorber allowed to warm to room temperature, during which period the trapped sample is evolved.
 - After deducting the blank contribution the samples fit the calibration curve with an R² value of 0.99985 and indicate that the adsorber is quantitative.

Versatility

- Open source
 - lons
 - Reactive neutrals
- Closed source
 - Ambient gas
 - Cryotrapped gas
 - Increased sensitivity
 - Purification (NEG)

- MBTOF
 - Extraction rate
 - power / integration time
 - Resolution
 - selectivity / mass range
 - Integration time
 - data rate / dynamic signals

Formation: Hydrogen and oxygen isotopes in water

- D/H in the solar system taken from Alexander et al.[2012].
- Tagish Lake is best chondritic match to P and D type asteroids that formed the Galilean and Saturnian satellites and also likely represents the rocky fraction of cometary materials.

- Oxygen isotopes in the solar system from McKeegan et al. [2009].
- Measurements of oxygen isotopes of water are virtually non-existent in the outer solar system – the gray area delineates out our present ambiguity.

Astrobiological Studies

Studies of Interior Processes

180 -70 90 50 km

Tidal heating of the icy interior

Atmospheric Chemistry and Structure

After Waite et al, Science, 316 p. 870 (2007)

Meeting the Science Requirements

STEP 2: Simulated MASPEX spectrum generated using lab line shapes from our mass spectrometer combined with NIST fragmentation and ionization data, and solar isotopic abundance information.

Results for the Measurement of Ambient Gas at 0.5 bar

Molecule	Specific isotope	Exact mass	Principal isotope	Molecular abun- dance	Mixing fraction	Min required acquisition time	Target precision	Minimum bounces required
		g/mol				sec		
H2	¹ H ₂	2.0	Р	0.895	0.895	<0.1	5%	0
H2	1H2H	3.0	2H	0.895	3.58E-5	<0.1	5%	4
He	³He	3.0	ЗНе	0.1	4.64E-5	<0.1	10%	4
He	⁴He	4.0	Р	0.1	0.1	<0.1	5%	0
CH4	12 C 1 H 4	16.0	Р	0.005	0.005	<0.1	1%	0
CH4	¹³ C¹H ₄	17.0	13C	0.005	5.25E-5	1.7	1%	0
CH4	¹² C ¹ H ₃ ² H	17.0	2H	0.005	3.72E-7	9.7	5%	21
N2	¹⁴ N ₂	28.0	Р	1.75E-6	1.74E-6	0.3	10%	3
Ne	™Ne	20.0	Р	2.06E-4	1.92E-4	<0.1	10%	0
Ne	²² Ne	22.0	22Ne	2.06E-4	1.39E-5	0.2	10%	0
NH3	¹⁴ N ¹ H ₃	17.0	Р	1.39E-7	1.39E-7	7.7	10%	8
Ar	³⁶ Ar	36.0	Р	5.37E-6	1.81E-8	21.1	10%	0
Ar	38 Ar	38.0	38Ar	5.37E-6	3.41E-9	111.7	10%	0
C2H6	¹² C ₂ ¹ H ₆	30.0	Р	3.34E-8	3.27E-8	2219.5	1%	3
C2H6	12 C 13 C 1 H ₅	31.1	13C	3.34E-8	7.38E-10	98205.	1%	16
Kr	⁸⁰ Kr	79.9	80Kr	3.04E-9	6.89E-11	13948.3	10%	3
Kr	82 Kr	81.9	82Kr	3.04E-9	3.51E-10	2734.5	10%	0
Kr	83 Kr	82.9	83Kr	3.04E-9	3.49E-10	2748.1	10%	0
Kr	84 Kr	83.9		CED 2.	_	المممامات		

STEP 3: Spreadsheet program developed to determine mass resolution and measurement time needed to satisfy the RFI requirements and thus generate a realistic operational scenario.

Summary

 MASPEX has a long history of development from internal and, more recently, external sources

NASA's funding of the PriME Technology
 Development and ICEE program demonstrate
 NASA's confidence to the development of MASPEX